On certain infinite series of Dirichlet type
نویسندگان
چکیده
منابع مشابه
Irrationality of certain infinite series
In this paper a new direct proof for the irrationality of Euler's number e = ∞ k=0 1 k! is presented. Furthermore, formulas for the base b digits are given which, however, are not computably effective. Finally we generalize our method and give a simple criterium for some fast converging series representing irrational numbers.
متن کاملThe Critical Values of Certain Dirichlet Series
We investigate the values of several types of Dirichlet series D(s) for certain integer values of s, and give explicit formulas for the value D(s) in many cases. The easiest types of D are Dirichlet L-functions and their variations; a somewhat more complex case involves elliptic functions. There is one new type that includes ∑∞ n=1(n +1) for which such values have not been studied previously. 2...
متن کاملIrrationality of certain infinite series II
In a recent paper a new direct proof for the irrationality of Euler's number e = ∞ k=0 1 k! and on the same lines a simple criterion for some fast converging series representing irrational numbers was given. In the present paper, we give some generalizations of our previous results. 1 Irrationality criterion Our considerations in [3] lead us to the following criterion for irrationality, where x...
متن کاملOn a functional equation satisfied by certain Dirichlet series
by giving a representation of L(s) in terms of Hurwitz zeta functions. That representation allowed us to get some information about zeros and poles; nevertheless no functional equation could be deduced from it. In this paper following a classical argument we obtain for L(s) as above, under suitable hypothesis, a functional equation of Riemann’s type. More precisely, let us consider the Dirichle...
متن کاملAnalytic properties of a certain multiple Dirichlet series
We consider a certain multiple Dirichlet series which is a generalization of that introduced in Masri, and we prove the meromorphic continuation to the whole space. Also, using certain functional relations and the technique of chaging variables introduced in Akiyama, Egami and Tanigawa, we prove that " the possible singularities " is indeed " the true singularities " .
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the Japan Academy, Series A, Mathematical Sciences
سال: 1993
ISSN: 0386-2194
DOI: 10.3792/pjaa.69.299